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Abstract: Our current psychopharmacological treatments for
anxiety disorders evince a number of shortcomings, including
troublesome side effects and lack of primary effects. Whereas
many new drugs have been developed in the past few decades,
most are based on outmoded theories of the pathogenesis of
these disorders (i.e., monoamine hypotheses), thus frustrating
our ability to create more specific and effective interventions.
Recently, however, the neurobiological literature has shown a
convergence of findings focusing on the glutamatergic system
in anxiety disorders, and the growth of pharmacological tools

targeting these receptors has led to the development of novel
treatments having anxiolytic effects in humans and animals
alike. Additionally, as this system is showing promise as a final
common pathway in the pathogenesis of anxiety disorders, we
may be able to employ glutamate-specific neuroimaging tech-
niques (e.g., N-acetyl-aspartate, GLX) to both guide treatment
decisions and present reliable objective biomarkers for treat-
ment efficacy. Key Words: Glutamate, anxiety, stress, psycho-
pharmacology, treatment, NMDA antagonist

INTRODUCTION

It is clear that anxiety disorders exist as the locus of
much suffering. However, anxiety in and of itself is
frequently adaptive and serves primarily to protect the
organism from both present and future harm. In normal
human subjects, fear and anxiety are produced in re-
sponse to a variety of exteroceptive, interoceptive, and
cognitive inputs and allow the individual to assess his or
her environment and make appropriate behavioral adjust-
ments. In life-threatening situations, the brain’s anxiety
network allows for this activation below the level of
conscious awareness such that responses can occur as
quickly as possible. This hard wiring has been highly
conserved throughout evolution,' thus making it possible
to study, at least in part, human anxiety through multiple
animal models, from rodents to primates.

The neurobiology of anxiety has been well delineated
and partially localized to one of the phylogenetically
oldest areas of the brain. When a threatening stimulus is
detected, the information is relayed through the thalamus
and then takes one of two paths, the so-called “low-road”
or “high-road.”? The low-road transmits the information
directly to the amygdala that compares it with stored
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threatening or fearful material, conducting a preliminary
and crude threat assessment. Along the high-road, infor-
mation travels through the secondary and heteromodal
sensory association cortices reaching the level of con-
sciousness before it eventually reaches the amygdala.
The faster monosynaptic low-road serves to constantly
monitor the internal and external environments for
threatening signals and modulates the moment-to-mo-
ment level of vigilance of the organism. Normally, this
cue-driven amygdalar activity is reigned in by the hip-
pocampus and areas of the prefrontal cortex, all of which
help the organism determine whether the stimuli con-
tinue to be threatening in a given context (i.e., one can
remain seated while in a doctor’s office as a stranger
approaches with a needle). However, in the presence of
threatening stimuli, the amygdala is able to overcome
this baseline tonic inhibition and modulate cortical pro-
cessing at an early and initial stage, thus preceding and
influencing the later corticoamygdalar inhibitory projec-
tions. In effect, when sufficiently activated, the amygdala
tells the cortex what to look for, directing and focusing
attention toward what it believes are dangerous stimuli.
In anxiety disorders, these stimuli are not truly dangerous
to the individual but are perceived as such, mediated by
a generally overactive or hypertrophied amygdala and a
weakened inhibition from the hippocampus and prefron-
tal cortex. Different anxiety disorders are marked by
their own idiosyncratic fears and types of memories
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stored in the amygdala; a crude approximation of our
current thinking is the following: post-traumatic stress
disorder (traumatic cues), panic disorder (bodily sensa-
tions), social phobia (interpersonal ridicule/embarrass-
ment), and specific phobias (specific items). Note that all
are marked by a misapplication of threat to seemingly
benign situations, mediated by concrete and rigid amyg-
dalar control over more flexible cortical systems. It is this
learning and hyperresponsivess that is the focus of much
of the experimental therapeutics applied to the field of
anxiety disorders. [We should note that although it seems
likely that the idiosyncratic fearful situations in general-
ized anxiety disorder (GAD) and obsessive-compulsive
disorder (OCD) are also stored in amygdalar representa-
tions, both of these disorders evince an increase in pre-
frontal cortical functioning—the opposite of the above
disorders.>* In fact, there is some discussion as to
whether OCD should be removed from the anxiety dis-
orders category due to its divergent neurobiology.’
Whereas the neurobiology of GAD is just beginning to
be studied in greater detail, it is possible that it represents
a pathological cortical compensatory response to an
overactive fear/anxiety locus].

PSYCHOPHARMACOLOGICAL TREATMENT
OF ANXIETY, AND ITS SHORTCOMINGS

It was long thought that anxiety disorders were the
result of an overexcited brain unable to effectively dis-
charge pent-up energy.® Thus, the earliest modern psy-
chopharmacological treatment of such anxiety was the
application of sedating medications, namely barbiturates
and benzodiazepines, which have their effects through
GABA receptors. Although highly effective, these med-
ications have significant adverse effects that limit their
potential (e.g., dependence, sedation, ataxia, memory im-
pairments, and weakness). This fueled the search for
novel antianxiety agents, which took a step forward with
the development of antidepressants (1960s) and more
selective serotonin modulators (selective serotonin re-
uptake inhibitors [SSRIs], 1980s), which were shown to
be as effective for many anxiety disorders as they were
for depression. As such, more patients with these condi-
tions can now be safely and successfully treated than
before, and there is evidence that suicide rates in many
countries are beginning to drop because of pharmaco-
therapy for depression and anxiety disorders.”” (How-
ever, we should note that a recent study by Kessler et
al.'® found no significant decrease in suicidal thoughts,
plans, gestures, or attempts in the U.S. during the 1990s.)

Nevertheless, the field recognizes many shortcomings
with respect to the pharmacological treatment of anxiety
that still limit our success in treating patients.''"'* These
can be summarized as follows: 1) Efficacy: In clinical
trials, response rates to antidepressant medications for
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major depression and specific anxiety disorders are usu-
ally only about 60%.'*"'® Despite statistical separation
from placebo, this therapy does not work for a substantial
proportion of the clinical population.'” 2) Adequacy of
response: Even among responders to antidepressant med-
ications, a significant amount of residual symptomatol-
ogy and functional impairment frequently persists,'® of-
ten resulting in the coprescription of more medications,
making polypharmacy the rule rather than the exception.
3) Tolerability: Although newer antidepressants are safer
than older drugs in terms of lethality in overdose,'? they
nevertheless impose substantial adverse side effects, in-
cluding sexual dysfunction®” and weight gain,?' that lead
to premature termination of treatment. 4) Objective
markers of treatment success: The judgment as to
whether a treatment has worked for anxiety is generally
based solely on subjective assessments (from the doctor
and the patient). Although slightly more objective mark-
ers are available for a few subtypes of anxiety disorders
in terms of ability to tolerate previously phobic situations
(e.g., ability to approach a previously avoided object/
situation after systematic desensitization and/or expo-
sure), we as yet have no reliable objective biomarkers
that assist patients and clinicians in judging the adequacy
of pharmacological treatments. 5) Rationally based treat-
ment: Our current first line medications for anxiety and
depression are mostly reiterations of treatments discov-
ered by serendipity (i.e., multiple classes of medications
targeting the brain monoamine systems).”**® Almost
none was developed based on molecular or preclinical neu-
roscience. Hence, we cannot assert that any of our current
treatments actually target a known pathophysiology related
to anxiety, frustrating our ability to make progress in de-
veloping more effective medications.'*!7-2+2

We conclude, therefore, that the field of developing
pharmacological treatments for mood and anxiety disor-
ders is currently mired in a reiterative process that per-
sists in coming up with variations on the monoamine
reuptake inhibitor strategy—a gross intervention discov-
ered by chance. It is unlikely that this approach will
presage more effective or better tolerated medications for
depressive and anxiety disorders.'*%¢

We should note here that the frequent use of the con-
junction depressive and anxiety disorders is intentional
and is based not only on the overwhelming comorbidity
between the two conditions, but also on the fact that our
first-line medications for anxiety disorders are in fact
antidepressants. Most clinical studies of one succeed in
excluding patients with the other from their samples, but
because the same treatments may be effective for each,
this is arguably artificial and an application of a rule that
does not always play out in clinical reality. Importantly,
we do not know many of the details about the frequently
comorbid, intimate, and possibly related nature of de-
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pression and anxiety, either phenomenologically or psy-
chobiologically.?’~%°

NEW DEVELOPMENTS IN THE
PHARMACOLOGY OF ANXIETY

Technology has progressed such that we can begin to
use increasingly intricate preclinical and clinical meth-
ods to advance new strategies for the treatment of mood
and anxiety disorders. Many new theories and com-
pounds have been proposed, including those based on
5- HT,, agonists'® and other specific serotonin-based
compounds,’**! NK-1 antagonists and other Substance
P-related species,”® neuropeptides (NPY, NPS),*-*
more specific GABA, agonists,”>** CRF antago-
nists,>>36 glutamate modulators, and [S—blockers,37’38
among others.

The primary approach we will present here is based on
the hypothesis that one unifying pathophysiological fea-
ture of several anxiety conditions is excessive excitatory
amino acid neurotransmission in response to stress.
Based on preclinical and clinical evidence from our
group and others, we will discuss the modification of
glutamatergic neurotransmission in the CNS as an ap-
proach to finding more effective and better tolerated
treatments,*>° 4!

GLUTAMATE AND STRESS

There is now abundant evidence that 1) exaggerated
response to stress due to constitutive and genetic fac-
tors>”*>* and/or 2) exposure to chronic levels of stress,
are key components in the vulnerability to develop mood
and anxiety disorders.***> Preclinical studies have
shown that excitatory neurotransmission, mediated in
part by elements of the glutamatergic neurotransmission
system, is enhanced by stress.** " The effects of gluta-
matergic neurotransmission are multiple and widespread
in the CNS, and it has been reported that up to 40% of all
synapses have a glutamatergic element.”' Glutamate re-
ceptors are split into several types, most broadly demar-
cated as ionotropic and metabotropic.’> The former in-
clude the NMDA, AMPA, and kainate receptors. The
metabotropic receptors have a modulatory role and will
be discussed later. The NMDA receptor mediates fast
excitatory transmission and is frequently colocalized
with either AMPA or kainate receptors, which are
thought to amplify the glutamatergic signal. Each of
these complexes has its highest density in limbic and
cortical regions; activation of the ionotropic receptors
can result in effects on cognition, learning, and memory,
inhibition of hippocampal neurogenesis and other effects
on neuroplasticity, pain perception, and neuroendocrine
regulation.’*>* However, their dysregulated and exces-
sive activation leads to excitotoxicity with increased cal-

cium ion entry and death of neurons.** Although com-
plex, the effects of glutamatergic neurotransmission can
be simplified as biphasic: controlled glutamatergic neu-
rotransmission is critical for ongoing higher order mental
processes, whereas excessive neurotransmission leads to
impairment of normal neuronal processes and even cell
death.>>% For many reasons, some of which are detailed
below, it is possible that medications that modulate glu-
tamatergic neurotransmission may be effective in treat-
ing mood and anxiety disorders.2¢%40-52-57

GLUTAMATERGIC NEUROTRANSMISSION IN
FEAR AND THE AMYGDALA

It is now well known that activation of neuronal pro-
cesses within the lateral nucleus of the amygdala (LA) is
essential for the acquisition, manifestation, and long-
term memory of conditioned fear in all mammalian spe-
cies studied (see reviews by Davis and Whalen®® and
LeDoung).(’0 The circuits, cellular responses, and mo-
lecular events that are necessary to sustain conditioned
fear have been worked out in detail and include the
activation of glutamatergic pathways that synapse on LA
neurons, which then project to the central nucleus pro-
ducing behavioral and autonomic responses.®’** (How-
ever, we should note here that although the importance of
the amygdala for the acquisition and consolidation of
conditioned fear memory is unequivocal, many other
parts of the extended amygdala, particularly the bed nu-
cleus of the stria terminalis, have been implicated in
more chronic forms of fear and avoidance.) The mode by
which classical fear conditioning is manifest in the
amygdala is the following.’*®* A neutral stimulus leads
to a certain amount of amygdalar glutamate release that
binds to NMDA and AMPA/kainate receptors, but this
weak activation and depolarization are not strong enough
to dislodge the Mg®" that partially blocks the NMDA
channel. A strong and aversive stimulus, on the other
hand, produces sufficient depolarization to allow full
permeability of the NMDA receptor and ion channel.
When administered together, the previously neutral stim-
ulus begins to take on the neurochemical signature of the
aversive stimulus. What seems important for our consid-
erations is the dynamic balance between inhibitory
(GABAergic) and excitatory (glutamatergic) transmis-
sion. >

Many studies using functional neuroimaging have
shown that acute fear in normal humans is reliably ac-
companied by activation of the amygdala® and that ex-
aggerated amygdala activity occurs in patients with de-
pression,”” panic disorder,®” social anxiety disorder,®®
posttraumatic stress disorder,®” and trait worry in indi-
viduals without a psychiatric illness.** Along these lines,
there is evidence that NMDA receptor antagonists ap-
plied to the LA abolish, in a reliable manner, the acqui-
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sition and extinction of conditioned fear in rodent models
of anxiety.””~"* Additionally, recent evidence has shown
that NMDA partial agonists facilitate conditioned fear
extinction in rodents and in humans with phobic disor-
ders.” This makes it possible that the same biological
processes responsible for conditioned fear in experimen-
tal animals are also involved in fear responses in both
normal humans and in those with pathological anxiety.
Further evidence supporting this similarity in biological
processes is found in our recent study,’® which showed
that a standard SSRI, citalopram, when applied to a
rodent model of fear conditioning, produces effects that
are highly reminiscent of those observed when the drug
is administered to patients with depression or anxiety
disorders. That is, an acute dose of citalopram produces
more fearful (i.e., freezing) behavior in fear conditioned
rats, whereas chronic administration causes less fearful
behavior when compared to vehicle.

NMDA RECEPTOR SUBUNITS
IN LTP AND LTD

In that same study,76 we also found that chronic, but
not acute, administration of citalopram induces down-
regulation of the NR2B subunit of the NMDA receptor.’’
This raises the possibility that a mechanism of action of
antidepressant drugs critical to reducing fear behavior
may be by affecting the functional sensitivity of the
glutamatergic neurotransmission system.”® %' Recent
data®” suggesting that the NR2B subunit is important for
hippocampal LTD (whereas the NR2A subunit is impor-
tant for LTP) are of great interest and potential clinical
relevance and deserve consideration in drug discovery
efforts. However, we should note here that a recent pa-
per®® found NR2B to be just as involved in LTP as
NR2A and made a good case that the above NR2 subunit
distinction between LTP and LTD is mistaken. More
research is clearly needed.

This system is also largely affected by environmental
stress. Recently, it was shown that rats that underwent
restraint-tail-shock stress manifested an increase in hip-
pocampal LTD via a mechanism by which stress acti-
vates glucocorticoid receptors, inhibiting the uptake of
glutamate, leading to a spillover and temporal summa-
tion of glutamate at extrasynaptic NR2B-containing
NMDA receptors, inducing hippocampal LTD.** The au-
thors of this study note that there is no clear mechanism
by which stress impairs glutamate reuptake, but they
describe previous work in their laboratory showing that
stress may lead to a phosphorylation-induced inactiva-
tion of glutamate-aspartate transporters, thus allowing
the extrasynaptic spillover of glutamate. Along these
lines, it is interesting to note that the antibiotic ceftriax-
one has recently been found to be a potent stimulator of
increased GLT1 (glutamate transporter, also known as
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EAAT?2) transcription and expression, and it is currently
being studied in many neurodegenerative diseases from
stroke to amyotrophic lateral sclerosis.®® (see Maragakis
and Rothstein®® for review of glutamate transporters).
Additionally, a recent review®’ described the possible
utility of antagonizing the NR2B subunit of the NMDA
receptor as a treatment for alcohol dependence, noting
that in vivo and in vitro experiments found elevated
NR2B expression after chronic ethanol exposure. The
authors theorized that NR2B antagonists would clinically
block the enhanced NMDA receptor activation that ac-
companies chronic ethanol exposure. It is also foresee-
able that such treatments would be effective in amelio-
rating the affective instability and anxiety that so often
accompanies not only chronic alcohol ingestion but also
alcohol withdrawal.

Finally, two interesting things we can mention further
about NR2B are:1) NR2B is more important than NR2A
during brain development, and although this reverses as
the brain matures, authors make important statements
that NR2B subunits still abound in the mature brain®%%°;
and 2) LeDoux’s model is concerned with NR2B be-
cause it is critical in the acquisition of fear conditioning,
and they have found a selective blocker of NR2B recep-
tors, ifenprodil, to be effective in blocking acquisition.”?

ANTIDEPRESSANT EFFECTS ON
GLUTAMATERGIC NEUROTRANSMISSION

Data suggest that chronic administration of antidepres-
sant drugs (SSRIs, SNRIs, TCAs, and MAOIs) decreases
glutamatergic activity in specific regions (including the
PFC and hippocampus)”®~*? and that acute administra-
tion of NMDA receptor antagonists have antianxiety and
antidepressant properties in preclinical and clinical mod-
els. 224809399 Berman et al.” studied seven subjects
with major depression who, in a double-blind placebo-
controlled manner, received intravenous ketamine or sa-
line with active and sham treatments separated by at least
1 week. They noted a significant reduction in Hamilton
Depression Rating Scale scores within 72 h after ket-
amine but not placebo, with results lasting for nearly 1
week. Although clearly ketamine is not viable as a
chronic antidepressant or antianxiety medication given
its significant cognitive and dissociative effects, we have
theorized its use in a manner similar to electroconvulsive
therapy (ECT). For example, the patient is given a ket-
amine-infusion treatment and concurrently started on an
antidepressant; the infusion is repeated weekly for per-
haps two to three total sessions, and by then, the standard
antidepressant will have kicked in. This allows for the
patient’s receiving an immediate antidepressant re-
sponse. Along these lines, it is noteworthy that Anand et
al.'® showed that preadministration of lamotrigine to
ketamine-receiving subjects both attenuated the latter’s
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neuropsychiatric effects and increased its immediate
mood-elevating effects. Thus, concurrent treatment with
lamotrigine may ease the side effects of the ketamine
infusion in the ECT analogy noted above. Lamotrigine
functionally inhibits glutamate release and is currently
used as an anticonvulsant as well as a treatment for
bipolar depression. Another small clinical study has
shown lamotrigine to be effective in certain PTSD symp-
toms (re-experiencing and avoidance/numbing).'®" Sim-
ilarly, topiramate, an AMPA/kainate blocker among
other actions, was found in an open-label study to reduce
re-experiencing symptoms in PTSD.'??

GLUTAMATE AND DENDRITIC
REMODELING

It is of crucial importance to the field to develop
hypotheses that link theories about the pathophysiology
of mood and anxiety disorders to drug discovery. As
noted above, there is now ample evidence that stress and
stress-induced glutamatergic neurotransmission are im-
portant factors in vulnerability to mood and anxiety dis-
orders. Bruce McEwen (see reviews by McEwen*’ and
Sapolsky'®) originally showed evidence of hippocampal
dendritic remodeling in response to stress; notably, this
was blocked by the atypical antidepressant drug tianep-
tine.'%~'%® Recently, John Morrison’s group'®’ reported
a similar finding that chronic restraint stress (an animal
model of depression'®®) causes dendritic remodeling of
pyramidal cells in the rodent prefrontal cortex. Specifi-
cally, there was a dramatic shortening of dendrites and
loss of dendritic spines. Importantly, the cell bodies from
these neurons remained intact. This shrinkage observed
in these animal models has putative similarities to the
hippocampal, subgenual, and prefrontal cortical volume
losses observed in certain affective and anxiety disorders
in humans as well as their reversal after treatment with
effective antidepressants or ECT.'®~''3 In the case of
chronic stress, high cortisol levels in conjunction with glu-
tamate excess could contribute to this cellular injury.'®® In
fact, studies have shown that glutamate infusions into
cultured rat amygdala neurons stimulate CRF release in
a concentration-dependent manner''*: of note, this stim-
ulation was blocked by an NMDA antagonist. Thus,
enhanced glutamate release could contribute to glu-
cocorticoid-induced neurotoxicity,49’50 the reversal of
which could be important in psychopharmacological
treatment. See reviews by Manji et al.'” and Duman
and Carlson et al.''>!'®

This shrinkage appears to disrupt the functionality of
the neurons and their signaling, but it may in fact be
compensatory or adaptive.''” In postsynaptic neurons in
the CNS, NMDA and AMPA receptors are actively shut-
tled between the membrane and cytoplasm by a clathrin-
dependent mechanism''®; of note, in mature cultures,

NR2B undergoes more robust endocytosis than NR2A,
consistent with previous studies showing NR2A to be
more highly expressed at stable synaptic sites.''® Thus,
one mechanism for terminating excessive glutamatergic
neurotransmission and the sustained activation of
NMDA receptors is the internalization of these recep-
tors."'® Interestingly, NMDA receptors are functionally
downregulated at synapses as a result of fear learning.'"’
We hypothesize that, during acute stress, internalization
of glutamatergic receptors occurs and functions as an
adaptive method of reducing the excitotoxic effects of
glutamate on postsynaptic neurons, and during more ex-
cessive or prolonged stress, the neuron further adaptively
reduces the number of available glutamate receptors by
reducing dendrite length and spine number to protect
itself from glutamate-induced cell death. Although this
limits glutamatergic toxic effects on the neuron and may
preserve the cell body, it essentially disconnects the neu-
ron from other neurons by reducing the number of syn-
aptic connections, thereby preventing cell death, but pos-
sibly precipitating anxiety or depressive disorders.''>'%°
Indeed, current prominent theories for the pathogenesis
of anxiety disorders include the notion that the amygdala
is disconnected from the tonic inhibiting influence of the
prefrontal cortex; this is also seen in the striking reduc-
tion in neuronal processes evident in the neurobiology of
depression (reviewed in Manji et al.'?").

NMDA receptor antagonists appear to have neuropro-
tective properties in a number of studies.'”'?* As noted
above, the NR2B subunit of the NMDA receptor has
recently been shown to be a critical element in the sur-
face expression of NMDA receptors,''® and internaliza-
tion of the NMDA receptor may be enhanced by drugs
that downregulate the NR2B subunit (e.g., citalopram as
described above), allowing the neuron to still respond to
fear but be protected from excitotoxicity. Recent studies
have found that lithium decreased NR2B phosphoryla-
tion, reducing NMDA receptor-mediated excitotoxic-
ity'** and increasing N-acetyl-aspartate (NAA) and gray
matter in the human brain.'**'* This again suggests
that, by reducing the cell surface expression of NMDA
receptors, these drugs may thereby reduce the sensitivity
of the neuron to glutamate, and this decrease in gluta-
matergic neurotransmission may avert dendritic remod-
eling under stress conditions.>* In 1999, a review'? noted
a dampening of NMDA receptor function by antidepres-
sant treatment, but queried as to its functional signifi-
cance. Both antidepressants and NMDA antagonists de-
crease glutamatergic neurotransmission without the
cell’s shrinking or pulling back its dendrites, whether as
protection from excitotoxicity or from another mecha-
nism. It is possible that recovery from depression or
anxiety disorders necessitates a restoration of a basal rate
of neurogenesis,'-'!3120:126 and thus that the adaptation
or inhibition of NMDA receptors (functionally reducing

NeuroRx®, Vol. 3, No. 1, 2006



62 SIMON AND GORMAN

glutamatergic neurotransmission) is necessary for the
mechanism of action of antidepressant medications.'?

DRUGS WITH EFFECTS ON
GLUTAMATERGIC NEUROTRANSMISSION

We and others have also now tested several drugs that
affect glutamatergic neurotransmission in patients with
mood and anxiety disorders. Charney’s group'*’'® re-
ported open-label efficacy for riluzole in patients with
refractory depression and those with bipolar depression.
Gorman’s group'?’ presented similar uncontrolled data
for riluzole in patients with GAD. Additionally, riluzole
was reported effective in a case study of a patient with
obsessive-compulsive disorder and major depression.'*°
Riluzole decreases glutamatergic neurotransmission, is
neuroprotective, and is approved for the treatment of
amyotrophic lateral sclerosis. Although its exact mech-
anism of action has yet to be elucidated, the following
have been theorized: inactivation of voltage-dependent
sodium channels; inactivation of P/Q-type calcium chan-
nels; direct inhibition of PKC; potentiation of AMPA
receptor; agonism of GABA, receptors; downmodula-
tion of the HPA axis; antagonism of the anxiogenic
properties of the betacarboline FG 7142 in rats; neuro-
protection in models of ischemia and in Parkinson’s dis-
ease; stimulation of NGF, BDNF, and GDNF in cultured
mouse astrocytes; and facilitating increase in clearance
of glutamate from synaptic space through enhancement
of reuptake in rat astrocytes.'*'~'** If riluzole continues
to prove efficacious in ongoing larger, multicenter, dou-
ble-blind, placebo-controlled studies, it will be even
more crucial to understand its mechanism of action. As
noted above, ketamine, an NMDA receptor antagonist,
had a surprisingly prolonged antidepressant effect,”® but
memantine, a drug that partially blocks the NMDA re-
ceptor and is approved for the treatment of Alzheimer’s
disease,'** did not appear efficacious in a placebo-con-
trolled depression trial.'*> Although we are not aware of
any anxiety disorder trials yet published for memantine,
a recent report'*® found that memantine inhibited etha-
nol-induced upregulation of NMDA receptor subunits
NR1, NR2A, and NR2B.

METABOTROPIC GLUTAMATE RECEPTORS

Multiple preclinical studies have shown that com-
pounds that affect metabotropic glutamate receptors have
efficacy in mood and anxiety disorders. What follows is
a rough sketch of the actions of several of these recep-
tors; for a more comprehensive description, please see
the recent review by Swanson et al.'*’ Briefly, eight
receptors are divided into three groups (group I,
mGluR1/5; group II, mGIuR2/3; and group III, mGluR4/
6/7/8). These G protein-coupled receptors serve to mod-
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ulate and fine tune glutamatergic neurotransmission and
may allow for specific and discrete pharmacological in-
terventions in a number of different psychiatric and neu-
rological diseases (e.g., depression, anxiety, addiction,
epilepsy, cerebral ischemia, pain, and Parkinson’s dis-
ease).' 714! Regulation of the glutamatergic system by
pharmacological derivatives of metabotropic agonists or
antagonists is the area that some authors feel is most
promising for new drug development.’*>’

The group I receptors are primarily (though not exclu-
sively) located postsynaptically and serve an excitatory
role. Local amygdalar injection of group I agonists has
been found to enhance startle responses and mediate
anxiogenic effects in rats.'** Specifically, mGIuR5 has
been postulated to be required for fear memory forma-
tion and long-term potentiation in the amygdala.'** Most
studies of antagonists of group I receptors have been
carried out with 2-methyl-6-(phenylethynyl)pyridine
(MPEP), which is selective for the mGlu5 receptor
subtype. This compound has been shown to have an-
xiolytic potential in multiple rodent models of anxi-
ety,'**~14¢ disrupting acquisition and expression of
fear conditioning in the amygdala and other regions,
respectively.'*>'*” In general, compounds that antago-
nize (directly or allosterically) the generally postsynaptic
and excitatory group I metabotropic receptors have
shown efficacy in preclinical models of depres-
sion 40141145148 404 anxiety,l‘m’149 and the literature
suggests that mGluR1 blockade may reduce NMDA-
mediated neurotransmission.'*® Accordingly, its activa-
tion may actually enhance NMDA receptor-mediated
neuronal degradation."*® Finally, chronic treatment with
the tricyclic antidepressant imipramine caused functional
downregulation of mGluR1in the CA1l region of mouse
hippocampi.'>" Interestingly, acute imipramine had no
effect on attenuating mGluR1 response to an agonist;
after 7 days, however, an effect emerged that was max-
imized at 14 days and further unchanged at 21 days,
somewhat paralleling the time course of action of imip-
ramine in humans.

In contrast to the postsynaptic/excitatory group I re-
ceptors, group II receptors exist at both pre- and postsyn-
aptic sites and are inhibitory. Whereas it has been shown
that their presynaptic activation serves to decrease glu-
tamate release (and that of other neurotransmitters)'>>
via a negative feedback mechanism, it has also been
argued that postsynaptic agonism limits the excitability
of target neurons. Multiple animal and human studies
have used these findings to assess the effects of gluta-
matergic modulation in models of anxiety disorders, with
agonist-mediated anxiolysis and antagonists increasing
anxiety. Gorman’s group'”® reported that LY354740, a
group II metabotropic (mGluR 2/3) agonist, is anxiolytic
in a nonhuman primate model of yohimbine-induced
anxiety; in these primates, post-treatment plasma cortisol
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was reduced by ~50%. This same compound was as
effective as alprazolam in preventing lactate-induced
anxiety in panic-prone rats,">* in blocking fear-potenti-
ated startle in rats'>> and humans,'*® and CO,-provoked
anxiety in human patients with panic disorder.'>® A re-
cent report shows changes in group I and group II
metabotropic receptor expression in the prefrontal cortex
of rats exposed to an impoverished rearing environ-
ment,"”’ and just as imipramine causes downregulation
of mGluR1 receptors, it also mediated upregulation of
hippocampal mGluR2/3."*® Finally, group II metabo-
tropic agonists have been shown, like lamotrigine (see
above), to decrease the motor and cognitive effects of
NMDA antagonists such as phencyclidine (which in-
creases glutamate neurotransmission via non-NMDA re-
ceptors.)'?

There have been fewer studies of group III metabo-
tropic receptors in anxiety and depression due to a pau-
city of pharmacological tools, and most have employed
genetic alterations. A study'®® using mice with a targeted
deletion of the gene for mGIuR7 (—/—) showed these
animals to be less immobile in the tail suspension and
forced swim tests (widely used to predict antidepressant
activity) as well as to display less anxiety in the light-
dark box, elevated plus maze, staircase test, and stress-
induced hyperthermia test. In contrast, a study using
mGIluR8 (primarily presynaptic) receptor-deficient mice
showed increased anxiety-related behaviors on the ele-
vated plus maze but did not demonstrate changes in gross
behavior or in the function of the autonomic nervous or
somatomotor systems. 161

The major glutamatergic research to date has focused
on the development of compounds that act within the
NMDA complex; however, it is likely that the fine tuning
of the system with drugs that affect metabotropic recep-
tors will ultimately attenuate excess glutamatergic neu-
rotransmission in discrete brain areas while leaving un-
affected normal transmission and thus minimize adverse
effects.

NEUROIMAGING OF GLUTAMATERGIC
FUNCTION IN ANXIETY DISORDERS

Despite the growing amount of preclinical data and the
development of novel therapeutics, there is still a dearth
of tools to assess the effectiveness of our interventions.
As such, one or more objective biological markers to
guide treatment decisions would be a welcome addition
to any area of psychiatry.'®? Although we will limit our
discussion to neuroimaging markers of glutamate in anx-
iety disorders, this is not to imply that research has
stalled on other biomarkers (including genetic vulnera-
bilities) for these conditions; rather, the field is progress-
ing at such a rapid rate that we only have space here for
a brief presentation of a topic salient to our discussion.

The direct measurement of brain chemicals using in
vivo magnetic resonance spectroscopy (MRS) provides a
promising lead to help guide treatment decisions. The
largest peak detected in primate brain by proton ('H)
MRS is NAA, an amino acid derived from N-acetyl-
aspartate-glutamate,'®*'®* which is associated with
steady-state glutamate concentrations and neuronal in-
tegrity in specific brain regions. Although originally be-
lieved to be a neuronal specific marker, NAA has re-
cently been found in oligodendrocytes and other glial-
derived elements.'® NAA concentration is reduced in
classic degenerative brain disorders like Huntington’s
disease,'®® Alzheimer’s disease,'®” and HIV-associated
dementia.'®® It has also been shown to be abnormal in
key brain areas in several psychiatric illnesses including
schizophrenia,'® depression,'”® and anxiety disor-
ders,*!”'~'"3 although the directionality of NAA in these
diseases has been more variable than in the neurodegen-
erative disorders. We and others have shown, for exam-
ple, decreased NAA in the superior temporal gyrus of
patients with schizophrenia,'”* decreased NAA in the
anterior cingulate of monkeys exposed to early rearing
stress,'”> reduced NAA concentrations in the temporal
cortex of rats reared in isolation,'’® and increased NAA
in the dorsolateral prefrontal cortex of patients with
GAD.* Importantly, NAA appears to be vulnerable to
psychosocial stress. Additional preliminary data from the
latter study also showed that cognitive behavioral ther-
apy decreases NAA in the dorsolateral prefrontal cortex
in patients with GAD. Interestingly, in a separate cohort
of patients with GAD, Mathew et al.'?® observed that
baseline reductions in NAA in the hippocampus pre-
dicted response to riluzole after 2 months of treatment.
Additionally, riluzole has been shown to increase NAA
in patients with ALS. These findings raise the possibility
that the stress-induced changes in dendritic morphology
that we see in rats exposed to chronic stress are related to
reduced NAA concentration, and therefore that reduced
NAA in human MRS studies also represents stress-in-
duced dendritic remodeling.

In addition to the high peak of NAA in proton MRS,
a smaller peak known as GLX can be detected; this is a
combination of glutamate, glutamine, and GABA.”
Studies have shown changes in the GLX peak in patients
with schizophrenia that support theories of glutamate
alteration in that disorder.'”*'””'78 Also, in our adult
monkeys exposed to adverse rearing stress, we found an
elevated GLX peak in the anterior cingulate that corre-
lated significantly with reduced NAA concentration.'””
Thus, we might conclude that adverse rearing stress in-
creases excitatory neurotransmission that leads to a re-
duction in neural integrity as measured by the NAA
peak; important to consider is the persistence of this
hyperglutamatergic state, long after the initial rearing
stress. However, we cannot rule out a change in GABA
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concentration in this experiment nor make cause-and-
effect conclusions based on a correlation. Investigators at
Yale University, however, have used the MRS technique
of J-editing to show a reduced concentration of GABA in
the occipital cortex of patients with depression and with
panic disorder.'”®'®® More recently, they have found
elevated concentrations of glutamate in patients with
MDD, with significant negative correlations between
glutamate and GABA.'®!

13C MRS is an even more powerful technique to
measure glutamate activity in the brain and offers a
means of capturing dynamic metabolite flux rates of
glutamate.'8%'®? This technique offers the possibility of
monitoring dynamic changes in the glutamate/glutamine
shuttle between astrocytes and neurons in discrete brain
regions, and it could be an excellent method for moni-
toring the effects of glutamatergic modulating drugs for
mood and anxiety disorders.

FUTURE DIRECTIONS

It is clear that the neurobiology of anxiety disorders is
being unveiled at a rapid rate and will lead to many
advances in the treatment of these seriously impairing
conditions. What we have presented here is but a snap-
shot of some of the novel therapies that have been based
on recent groundbreaking work. There is an exciting
amount of research being undertaken, and the discovery
of glutamatergic mechanisms in anxiety disorders may
allow the ultimate elucidation of a single common path-
way for their origin and treatment. As is usual in science,
this excitement extends even beyond the field of anxiety
disorders; witness the well known association between
anxiety and pain, which may also be the product of
glutamatergic dysregulation. Pain, seemingly out of no-
where, for which no medical cause can be found, is not
uncommon in anxiety disorders and is frequently ame-
liorated with treatment of the psychiatric malady. There
is an increasingly bolstered association between pain
(including chronic varieties) and central glutamatergic
dysfunction, such that NMDA antagonists, and more
specifically NR2B antagonists, are being studied for its
treatment; NR2B antagonists are antinociceptive at doses
below those that impair motor coordination.'®* Addition-
ally, studies have shown that group I metabotropic re-
ceptors are involved in the development and mainte-
nance of pronociceptive hypersensitivity, and group I
receptor antagonists are antinociceptive, as are agonists
for group II receptors, in keeping with their respective
effects on anxiety (see Chizh'® for a recent review). We
include these final points within the Future Directions
section as an impetus to merge different fields of existing
research to develop studies to address common neurobi-
ological mechanisms of illness behavior.
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